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a r t i c l e i n f o

Article history:
Received 5 March 2009
Received in revised form
19 July 2009
Accepted 22 July 2009
Available online 26 July 2009

Keywords:
EPDM
Mechanical behaviour
Chemi-crystallization
* Corresponding author at: Instituto de Fı́sica R
Exactas, Ingenierı́a y Agrimensura, Universidad Nac
Laboratorio de Materiales, Escuela de Ingenierı́a El
2000 Rosario, Argentina. Fax: þ54 0341 480 2654/48

E-mail address: olambri@fceia.unr.edu.ar (O.A. Lam

0032-3861/$ – see front matter � 2009 Elsevier Ltd.
doi:10.1016/j.polymer.2009.07.037
a b s t r a c t

The present work presents a model to evaluate the average inclusion strain in the matrix of a bulk
polymer. The new model considers a two-phase polymer (matrix and inclusions), where the bulk sample
is partitioned in small elementary cubes. Taking a large enough number of partitions, each element can
be considered to be composed of a single phase, where adjacent elements may be composed by different
phases. Moreover, the size of the elementary cubes of the partition is chosen to allow for the accurate
representation of the material properties. The model takes into account the interaction between inclu-
sions, and therefore, for different amount of volume fractions of inclusions within the matrix. Experi-
mental results show that the model gives an accurate representation of the average strain in the rubber
matrix caused by the crystallites in a two-phase polymer as EPDM (ethylene–propylene-diene M-class
rubber).

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Semi-crystalline polymers are composed by two phases, where
the crystalline zones, called also crystallites, are embedded into an
amorphous matrix [1,2]. From a mesoscopical point of view, crys-
tallites can be considered as inclusions into an elastic matrix. In the
theory of elasticity one inclusion is a region where its shape is
different from the surrounding bulk matrix or where the elastic
constant are different from the bulk matrix. The problem of inclu-
sion in solids has been largely studied in the literature in several
works [3–9]. For instance, Lee et al. [8] studied the elasto-plastic
behaviour in a matrix originated by an isolated inclusion, assuming
ideal plastic behaviour for an isotropic matrix. In their study the
case of purely elastic accommodation of stress and strain related to
a misfitting spherical precipitate was discussed in the first place.
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éctrica, Avda. Pellegrini 250,
2 17 72.

bri).

All rights reserved.
On the other hand, Takayanagi [1,10] on his model introduces
a partition of the polymer in elements of prismatic shape in order to
describe the relaxation processes in a two-phase polymer. In
Takayanagi’s model the crystalline and amorphous regions were in
series, so that each one is subjected to the same stress and their
compliances are added like in the Reuss approximation [1,10].

In the present work, the basic ideas for the purely elastic treat-
ment stated in the paper by Lee et al. will be used together with the
Takayanagi work for describing the average inclusion strain in the
bulk matrix of a two-phase polymer, as the ethylene–propylene-
diene M-class rubber, EPDM. However, the model developed in the
present work is a more general, allowing for the interaction between
inclusions, and therefore for different amount of volume fractions of
inclusions within the matrix. In fact, the new model presented here
considers a two-phase polymer where the bulk sample is parti-
tioned in small elementary cubes. Taking a large enough number of
partitions, each element can be considered as composed by one of
the two different phases. Moreover, the size of the elementary cubes
of the partition is chosen in order to allow the accurate represen-
tation of the material properties. This representation was recently
used by Mocellini et al., for the study of mechanical and electrical
relaxation processes in two-phase polymers [11,12].
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Table 1
Status of the studied samples, detailing the doses and neutron fluxes used during the
neutron irradiation processes.

Sample denomination Dose (Gy) Thermal neutron flux
(n/cm2 s)

Fast neutron flux
(n/cm2 s)

A 0 0 0

High flux irradiation
H 415 8.5� 107 2.75� 108

I 830 8.5� 107 2.75� 108

J 4150 1.7� 108 5.5� 108

K 8300 1.7� 108 5.5� 108

Low flux irradiation
C 12.7 5.7� 107 5.0� 107

E 38.2 5.7� 107 5.0� 107

F 51.0 5.7� 107 5.0� 107
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Finally, the model will be successfully verified through experi-
mental studies using dynamic mechanical analysis and dielectric
relaxation techniques applied to EPDM with both, different crys-
talline volume fraction and size of crystallites promoted by neutron
irradiation. Neutron irradiation on EPDM leads to the increase in
the crystallinity degree (crystal volume fraction) through a process
of chemi-crystallization [13–18], which depends on dose and
neutron flux level [19,20]. The increase in the volume fraction of
crystallites and in their size was revealed by means of dynamic
mechanical analysis (DMA, tan (f) and elastic modulus measure-
ments as a function of temperature). Besides, by increasing the
irradiation dose the crystallinity degree is destroyed [19,20].
Indeed, neutron damage assessment appears as an important
engineering consideration for the application of EPDM in the
electrical industry, because the damage produced by long-term
exposition of EPDM to electromagnetic fields [21] can be achieved
by short neutron irradiation doses and/or times.

2. Experimental

2.1. Samples

Samples were commercial ethylene–propylene-diene-mono-
mer (EPDM) used as housing of non-ceramic electrical insulators
(Avator of Sitece Electrical Industries, Buenos Aires, Argentina)
which are usually employed in outdoor transmission lines of 66 kV
[21]. The nominal molar composition of the rubber was 55%
ethylene – 42% propylene and 3% diene-monomer. The EPDM used
in the present work was reinforced with ceramic particles in
a proportion of 44 wt%, determined by means of pyrolysis. Ceramic
was identified, by means of X-ray studies plus refining of the
patterns, as Bayerite (alumina-trihydrate, ATH, Avator of Sitece
Electrical Industries, Buenos Aires, Argentina) having a triclinic
lattice with a¼ 17.338 Å, b¼ 10.086 Å, c¼ 9.73 Å, a¼ 94.17

�
,

b¼ 92.13
�

and g¼ 90
�

[19,20].
Samples of parallelepiped form of 9 mm width, 8 mm thick and

38 mm length were cut from the rubber with a low speed saw.
Subsequently, the final size of the sample was adjusted by
mechanical polishing in distilled water, in accordance to the
requirements of each kind of test.

2.2. Neutron irradiation

Neutron irradiations were performed under different conditions
in two different nuclear reactors, the RA-6 and the RA-4 of the
National Atomic Energy Commission of Argentina, where the main
differences were the flux level and power of operation. In both
reactors the samples were irradiated at room temperature in air at
atmospheric pressure.

Samples irradiated at the RA-6 nuclear reactor will be identified
as samples under high flux irradiation. All samples were irradiated
with bismuth and cadmium filters. The doses and fluxes related to
neutron irradiation are written in Table 1.

In the RA-4 the samples were placed inside of a cylinder of poly-
methyl-methacrylate (PMMA) of 250 mm length and 25 mm
diameter with a wall and bases of thickness 2 mm and 20 mm,
respectively. Samples irradiated at the RA-4 nuclear reactor will be
identified as samples under low flux irradiation, see Table 1 and
Refs. [19,20,22] for more details.

The charge with Bayerite in the EPDM gave rise to an additional
irradiation process through b particles, during and after the
neutron irradiation. In all the irradiated samples the activity was
smaller than 5.6�104 Bq. Considering the whole reactions of the
neutron irradiation process over the Bayerite a b dose rate less than
3 Gy/h can be obtained for the irradiation at the RA-6 [20].
2.3. Measurements

Dielectric relaxation (DR) measurements were carried out in an
automated measuring system using a Tektronix TDS-210 (USA)
real-time Digital Sampling Oscilloscope, an Instek GW-830
(Taiwan) Synthesized Signal Generator and a Broadband Dielectric
Interface designed and built at the Laboratory of Liquid Systems,
Physics Dept., Faculty of Engineering, UBA, together with a signal
processing algorithm based on the Fast Fourier Transform (FFT). All
the measurement and signal processing software was developed at
the Laboratory and uses the VEE� (Version 3.0 or higher) graphical
language environment of Agilent Corp. (USA) running on the
Windows 98� (or higher) operating system from Microsoft Corp.
(USA). Further details on the dielectric measuring system are given
in Ref. [23]. Samples were placed at a temperature of 294 K� 1 K in
a broadband coaxial cell. Dielectric measurements were made at 15
logarithmically spaced frequencies for each decade in the range
between 15 Hz and 1500 KHz. In addition, measurements in
a Topward 5100 (Taiwan) LCR Meter were made to check the results
at the following frequencies: 100 Hz, 120 Hz, 400 Hz, 1 KHz, 5 KHz,
10 KHz and 15.7 KHz.

The lowest measurement frequency for Dielectric Relaxation
measurements was 15 Hz since the small size of the samples
precluded the use of guard electrode techniques. It must be
remarked that guard electrode techniques are necessary at low
frequencies to mitigate the effects of surface leakage currents on
the sample. These currents originate large uncertainties in the
measurement of dielectric losses at frequencies below a few tens of
Hz [21]. Samples used in DR studies were taken from the same
parallelepiped used for DMA studies. Rectangular plates
(5 mm� 4 mm approximately) with a thickness of about 2 mm
were used. The dimensions of each sample were measured with
a Digimess 110 digital calliper made by Shinko Precision (China), to
an accuracy of �0.01 mm. Prior to measurements, the sample
surfaces were carefully cleaned and rinsed in deionised water of
low conductivity (>0.1 mS/cm), and then placed over filter paper in
air at room temperature for 1 h. Deionised water was obtained in
the laboratory from a water deionising system made by Silicon
Quı́mica (Argentina). The conductivity of the water was measured,
immediately before being used, with an ‘‘on-line’’ conductivity
meter model HI 983304 made by Hanna Instruments (Portugal).

Measurements of dynamic mechanical analysis (DMA), loss
tangent (tan (f)) and elastic shear modulus (G0) were carried out as
a function of temperature at frequencies between 1 and 70 Hz, in
a equipment developed at the Laboratory of Materials (CONICET-
UNR), Rosario. The temperature range of the measurements was
between 180 K and 370 K and the heating rate was of about
1 K/min. Measurements were performed under Argon atmosphere
at atmospheric pressure. The samples for DMA studies were
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parallelepiped bars of 5 mm width, 4 mm thick and 30 mm length.
The maximum shear strain on the sample was 2�10�4. Tan (f)
values were independent of the amplitude of the oscillating strain,
i. e. doubling the applied stress led to the doubling of the strain
response [24]. The estimated uncertainties for tan (f) and G0 were
less than 3% and 10%, respectively. See Refs.[19,20] for more
experimental details.

3. The model

We consider a two-phase polymer partitioned in different cubes
which form a sizeable bulk material, in such a way that a given cube
can be of one phase and its neighbourhood can be of the same
phase or of the other one. Fig. 1a shows the representation for
a two-phase polymer, which was used in a previous work for
describing the dielectric response from dynamic mechanical anal-
ysis [12]. In fact, the smallest size of the partition must allow to
describing the morphology of the partitioned material in such
a way that permit us to obtain the best representation of this
partition made in the material. As it was mentioned in the intro-
duction section, a partition of a polymer made in this mode has
Fig. 1. a: Three-dimensional representation of the partition of a polymer sample.
Taken from Ref. [12]. b: Representation of the base (at the z¼ 0 plane) of the polymer
sample in Fig. 1a. Dx and Dy are the size of the partition over each axis and Nx and Ny

are the number of partitions laying on the x- and y-axis respectively. Taken and
adapted from Ref. [12].
some similarity to Takayanagi’s model [1,10] used for describing
oriented polymers.

In Fig. 1b, the base of the parallelepiped is showed at the z¼ 0
plane, where Dx and Dy are the size of the edge in the x- and y-axis,
respectively; of the base of a single cube. In addition, considering
that the distribution of inclusions is homogeneous in volume, it
results that the number of partitions related to inclusions in each
column along the z-axis, is approximately the same.

In the present work the crystalline zones in a two-phase poly-
mer, will be considered as an inclusion embedded into a continuous
and homogeneous matrix. The growing of crystalline zones in two-
phase polymers, e.g. by chemi-crystallization; leads to a strain
misfit into the matrix. An evaluation of the behaviour of the strain
misfit during the development of the above mentioned processes
can be done through the application of the here presented model.
Even if the model is based on the partitioned material, where each
part of the partition is in contact with each other, i.e. interaction
effects are taking into account, the case of dilute inclusion can also
be satisfied. In fact, a dilute case will be easily described by
decreasing the volume fraction of the inclusions into the matrix.
This point will be clarified after observing the mathematical
treatment of the model.

The degree of strain misfit will be calculated considering the
equilibrium condition in a homogeneous elastic continuous, which
results after forcing to locate into a cubic hole of the matrix (with
edge length lop) a cubic inclusion of larger size (edge length,
lopþ˛ lop, with 0�˛� 1). Once the inclusion is located into the
hole, stresses release, giving rise to a movement of the interface
between the inclusion and the matrix. This idea for describing the
degree of strain misfit into a matrix was reported earlier by Lee
et al. [8] treating diluted spherical precipitates, without elastic
interaction between the inclusions themselves located into the
matrix. Besides, the treatment by Eshelby cited in Ref. [3] has also
similarity to Lee et al.’s work.

It is convenient to point out at this time, that we have chosen Lee
et al.’s basic ideas for developing our model, because Lee’s model
introduces a coefficient to measure the degree of misfitting. This
coefficient makes easy to handle and to interpret the experimental
results, in contrast to other models reported in the literature where
the term related to the misfitting is hard to be handled and inter-
preted due to its mathematical complexity.

Fig. 2 shows a plane (z,y) of the partitioned sample at x¼ v,
where the size of the partitioned matrix, Dx, Dy, Dz; was chosen
equal to lop. The model for calculating the degree of the strain misfit
starts with the following considerations:

a) The volume element located at (v,m,j) of the whole partitioned
matrix (see Figs. 1 and 2), which is plotted by means of full fine
lines in Fig. 2, is cut and removed out of the matrix; leading to
a cubic hole of edge lop. In other words, a cubic volume is cut
from the non-distortioned initial cubic lattice.

b) An inclusion of size lopþ˛ lop, with 0�˛� 1, plotted by
means of broken lines will be firstly compressed to fit into the
hole of the matrix and subsequently placed in.

c) The inclusion is mechanically released and then the boundaries
of the hole, in the x-, y- and z-axis, displace to a position
lopþ b˛ lop, with 0� b� 1, where the equilibrium of stresses is
achieved. This state is represented by the wider lines in Fig. 2.

We consider the movement of each boundary in each axis as
a plane front which moves until the equilibrium of stresses in each
axis is reached. The contribution to the movement in the x-axis
owing to the configuration of stresses in the y- and z-axis is
obtained by the linear superposition principle through the Poisson
ratio.



Fig. 2. Accommodation of the misfit strain by the appearance of an inclusion into the
material matrix. Fine full line: Initial size of the base of the cube of the partitioned
material. Broken line: Size of the inclusion free of stresses. Wider full line: Equilibrium
position of the boundary between the inclusion and the matrix, after location of the
inclusion into the matrix hole (see details in the text). Arrows in the figure indicate the
pushing effect of the inclusion on the matrix.

Fig. 3. Movement of the boundary of the inclusion (v,m,j) after location in the matrix
hole and achievement of the mechanical equilibrium.
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It is well know that the apexes of a cubic-shaped inclusion are
points where stresses concentrate and in addition, different shapes
of inclusion as plates or needles lead to different patterns of
stresses into the matrix [3,5,6]. However, this representation based
on cubic inclusions does not diminish the potentiality of the model,
since we are looking for the bulk effect produced by the strain
misfit in a mean field approximation. That is, the model does not
look for the local effect due to the shape of the inclusion into the
matrix. In fact, the non-uniform stress distribution of both, into the
inclusion or into the matrix are averaged by the mean-field
approximation, i.e. we are transforming the non-uniform stress
distribution field in a homogeneous average stress.

To follow the crystallinity degree evolution in semi-crystalline
rubbers as EPDM is very complicate, because the very low volume
fraction of crystals in the matrix, which makes X-ray or differential
thermal analysis (DTA) measurements almost unable to describe
the cited evolution. However, it should be remarked that the model
proposed in this work will be able to describe the experimental
results concerning the evolution of crystalline phases in EPDM
rubber.
Fig. 4. Detail of the representation of Fig. 3, showing the displacements into the
inclusion.
3.1. The one-dimensional case

Let’s start the analysis considering in the one-dimensional case,
the movement of the boundary in the z-axis, produced by the
inclusion located at (v,m,j) and its effects over the neighbour matrix
element (v,m,k), see Fig. 2. The displacement of the boundary of the
element (v,m,j) from the initial position (position P in Fig. 3) after
the inclusion is forced into the hole and released mechanically
achieving the mechanical equilibrium, leads to the movement of
the P-point from the position P to P0, Fig. 3.

We consider, that the inclusion and the matrix are homoge-
neous media, and due to the symmetry of the problem the centre of
the inclusion, O point, will not change its position during the
deformation process and the achievement of the stresses equilib-
rium, Fig. 3. Then, as it is shown in Fig. 4, any point inside the
inclusion between the initial state (original size, free of stresses)
and after forcing the inclusion into matrix and subsequent
achievement of the mechanical equilibrium, moves from (zþ z˛) to
(zþ z˛bz), where bz means the misfit coefficient along the z-axis.
This leads to a displacement in the z-axis, ui(z), that is

uiðzÞ ¼ ðzþ z ˛Þ �
�
zþ z ˛ bz� (1)

uiðzÞ ¼ z˛
�
1� bz� (2)

Consequently the mean strain inside the inclusion (averaged by
the mean field approximation) in the z-axis, 3i

z, results,

3z
i ¼

vui

vz
¼ ˛

�
1� bz� (3)

Here after the magnitudes corresponding to the inclusion or to
the matrix, will be noted with a subscript i or m; respectively. In
addition, either the direction for the strain misfit coefficient, b, and
for the number of inclusions or matrix elements (N) will be denoted
through a supra-subscript.

Now, we will study the resulting mean strain inside the matrix
element. Considering that there exists an inclusion concentration
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lying in the z-axis Ni
z/Nm

z (where Ni
z and Nm

z are the number of
inclusions and the number of matrix elements, respectively, which
satisfy the condition Ni

zþNm
z ¼Nz), the Ni

z inclusions move the
boundaries of the Nm

z partitions, in such a way that to the partition
(v,m,k) corresponds the following displacement zþ z˛bzNi

z/Nm
z , see

Fig. 5.
Then, the displacement in the z-axis for the matrix elements can

be written,

umðzÞ ¼ z ˛ bz
�

Nz
i

Nz
m

�
(4)

Therefore, the strain inside the matrix element in the z-axis, 3m
z ,

results,

3z
m ¼

vum

vz
¼ ˛ bz

�
Nz

i
Nz

m

�
(5)

By working Eq. (5) we obtain,

3z
m ¼ ˛ bz

�
Nz

i =Nz

Nz
m=Nz

�
(6)

and defining in the usual mode the volume fraction both for the
inclusions and for the matrix elements of the partioned material in
the z-axis, such that

frz
i ¼ Nz

i =Nz (7)

frz
m ¼ Nz

m=Nz (8)

we can write

3z
m ¼ ˛ bz

�
frz

i
frz

m

�
(9)

The mechanical equilibrium conditions at the boundary
between the adjacent elements (v,m,j) and (v,m,k), according to the
Reuss approximation [1,5] (see Fig. 2), implies

sz
i ¼ sz

m (10)
Fig. 5. Displacements into the matrix element produced by placing the inclusion in its
hole.
Eq. (10), represents the mechanical equilibrium condition for
a direction perpendicular to the surface of the interface between
the amorphous and crystalline phases.

Applying Hooke’s law and considering the Young moduli for the
matrix and inclusion, Ei and Em, respectively, we can obtain

3z
i Ei ¼ 3z

m Em (11)

˛
�
1� bz�Ei ¼ ˛ bz

�
frz

i
frz

m

�
Em (12)

from where the misfitting coefficient in the z-axis, bz, can be
obtained as a function of the Young moduli and volume fraction of
both inclusions and matrix,

bz ¼ 1

1þ
 

Em

Ei

!  
frz

i
frz

m

! (13)

If we consider that the material has a random distribution of
inclusions in its bulk, the ratio between the volume fraction of the
inclusions and the elements of the matrix in the three-axis direc-
tions is approximately the same, and then we can write

�
frz

i
frz

m

�
¼
�

frx
i

frx
m

�
¼
 

fry
i

fry
m

!
¼
�

fri

frm

�
(14)

Consequently, from Eq. (13) as it could be expected, it results

bz ¼ bx ¼ by ¼ b (15)

Therefore, we have obtained the expression for the misfit of
strain in one-dimensional representation, that is

b ¼ 1

1þ
 

Em

Ei

!  
fri

frm

! (16)

3.2. The three-dimensional case

In the following paragraphs we will introduce the coupled strain
effects in the three-dimensional network of the partitioned mate-
rial of Fig. 1. In fact, the degree of displacement of the boundary in
the z-axis in Fig. 2 for the inclusion, when the contribution of the
neighbourhood in the x- and y-axis is taken into account leads to
a reduction of the original displacement. Indeed, the compression
stresses from the x- and y-axis, through the Poisson modulus
produce a displacement in opposite direction to the produced
during the achievement of the equilibrium of stresses in the one-
dimensional study. Then, considering now the effects along the z-
axis due to the inclusions lying in the y- and x-axis and using the
linear superposition principle, the total strain in the z-axis for the
inclusion element (v,m,j), 3z

iT, can be written as

3z
iT ¼ 3z

i � 3x
i ni � 3y

i ni (17)

where ni is the Poisson modulus of the inclusion partition, and 3i
x

and 3i
y have the same meaning that 3i

z for the one-dimensional
treatment. Remembering that the strain inside the inclusion has
the form given by Eq. (3), ð3z

i ¼ ˛ð1� bzÞÞ, it results

3z
iT ¼ ˛

�
1� bz�� ˛

�
1� bx�ni � ˛

�
1� by�ni (18)

From Eq. (15) we can re-write Eq. (18), with only one misfit
coefficient, that is
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3z
iT ¼ ˛ð1� bÞ ð1� 2niÞ (19)
A straightforward analysis, allows us to write the total strain in
the three-dimensional case in the z-axis as a function of an average
misfit coefficient for the whole volume of the material, bb, such that

3z
iT ¼ ˛ð1� bbÞ (20)

Therefore, relating Eqs. (19) and (20) and considering the
interactions of the partitions in the x- and y-axis, we can write the
resulting strain inside of a single inclusion (v,m,j) lying in the z-axis,
3i

z of Eq. (3), as

3z
i ¼

˛ð1� bbÞ
ð1� 2niÞ

(21)

The total strain in the adjacent matrix element (v,m,k) in the
z-axis, considering also the interactions in the x- and y-axis, results

3z
mT ¼ 3z

m � 3x
mnm � 3y

mnm (22)

Substituting the value of the strain in the matrix given by Eq. (9)
in the above expression, we obtain

3z
mT ¼ ˛bz

�
frz

i
frz

m

�
� ˛bx

�
frx

i
frx

m

�
nm � ˛by

 
fry

i

fry
m

!
nm (23)

Remembering that b and the ratio between the volume fraction
of inclusions and matrix elements in the three-axis is the same, it
results

3z
mT ¼ ˛b

�
fri

frm

�
ð1� 2nmÞ (24)

A similar treatment to the one made for the inclusion, allows us
to write the total strain in the three-dimensional case in the z-axis
for the whole volume of the material as a function of an average
misfit coefficient, bb, such that

3z
mT ¼ ˛bb

�
fri

frm

�
(25)

Then from Eqs. (24) and (25) and using Eq. (9) the resulting
strain in a single matrix element (v,m,k) can be calculated as

3z
m ¼

˛bb

 
fri

frm

!

ð1� 2nmÞ
(26)

Once the equilibrium is reached at the boundary between the
inclusion (v,m,j) and the matrix (v,m,k), we can write

3z
i Ei ¼ 3z

mEm (27)

Substituting in the above equation the results from Eq. (21) and
(26), it results

˛ð1� bbÞ
ð1� 2niÞ

Ei ¼
˛bb

 
fri
frm

!

ð1� 2nmÞ
Em (28)

and working the Eq. (28), we have

ð1� bbÞEi ¼ bb

�
fri

frm

�
ð1� 2niÞ
ð1� 2nmÞ

Em (29)

from where bb can be easily obtained, that is

bb ¼
1

1þ
 

Em

Ei

!  
fri

1� fri

!
ð1� 2niÞ
ð1� 2nmÞ

(30)
From Eq. (30) we can conclude that when fri / 0 then, bb / 1
which implies that the misfit of strain in the matrix will be negli-
gible, as it should be.

4. Comparison of the present results with the results of the
Lee et al. earlier model

Lee et al. [8], for the misfit coefficient around a spherical
precipitate considered as an inclusion, bl, found the following
equation

bl ¼
a g

aðg� 1Þ þ 1
(31)

where a¼ð1þnmÞ=3ð1�nmÞ, g¼mið1þniÞð1�2nmÞ=mmð1þnmÞð1�2niÞ, m

is the shear modulus and n is the Poisson modulus. The subscripts i
and m refer to the inclusion and matrix values, respectively.

By working, we have

bl ¼
1

1þ mm

mi
2
ð1� 2viÞ
ð1þ viÞ

¼ 1

1þ Em

Ei
2
ð1� 2viÞ
ð1þ vmÞ

(32)

where E is the Young modulus.
On the other hand, re-writing Eq. (30) in the following form

bb ¼
1

1þ
 

Em

Ei

!  
fri

1� fri

!
ð1þ nmÞ
ð1� 2nmÞ

ð1� 2niÞ
ð1þ nmÞ

(33)

and comparing with the Eq. (32) we can observe the differences
between the predicted b coefficients by the both models.

The present model is related to the mean strain inside the whole
matrix. In comparison to Lee’s model, which takes into account
only one inclusion in the matrix, the proposed model is a more
general one, which allows for interaction between inclusions, and
so, for different amount of inclusions fractions within the matrix. In
that sense bb, which corresponds to a misfit coefficient, has to be
considered as a measurement of the average inclusion strain caused
by the matrix or vice versa.

5. Application to the neutron irradiated EPDM

As said before, we reported that neutron irradiation on
ethylene–propylene-diene M-class rubber (EPDM) leads to the
increase in the crystallinity degree (crystal volume fraction) of this
two-phase polymer through a process of chemi-crystallization [13–
18], which depends on dose and neutron flux level [19,20]. The
increase in the volume fraction of crystallites and in their size was
revealed by means of DMA response. The crystals in EPDM can be
considered as inclusions into the rubber matrix that strengthen it,
but the behaviour of the elastic modulus does not always reveal the
effect of the crystalline degree development. Indeed, many times
the hardening of the matrix cannot be detected due to the simul-
taneous occurrence of chain scission and chemi-crystallization
processes in the rubber during irradiation, which lead to a decrease
in the elastic response of the matrix [19,20]. The contribution to the
elastic modulus due to crosslinking promoted by the H-pull during
the irradiation process is not taken into account, because the
swelling studies did not reveal the appearance of the development
of crosslinking points [19,20]. However, we cannot fully reject that
some additional points of crosslinking may be developed during
irradiation.

In the other hand, it has been already reported that the change
in the crystallinity degree promoted by chemi-crystallization
process in EPDM is difficult to be observed by means of other



Fig. 7. Maximum value of the tan (f) measured in DMA and the temperature corre-
sponding to the tan (f) maximum, as a function of the irradiation dose at low flux.
Crystalline volume fraction and crystals size are related as indicated in Fig. 6.
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experimental techniques, like X-ray diffraction or DTA [15,19,20].
DTA measurements allow to determine the appearance of the
endothermic peak related to the melting of crystals at around 310 K,
however it is still difficult to determine accurately the changes in
the crystallinity degree from DTA measurements.

In this article we will show that the coefficient b of the previ-
ously presented model, gives an accurate measurement of the
average strain into the matrix caused by both the appearance or
growing of inclusions into a two-phase polymer as EPDM. More-
over, by comparing the DMA results and the evolution of the values
of the coefficient b with the DR results, we will conclude that the
relaxation time measured from the electrical excitation of the
crystals caused by the dipoles in the amorphous zone is clearly
related to both, the evolution of the crystallinity and the degree of
internal stresses into the rubber matrix. We will present first the
DMA results and we will compare then with both, the calculated
values for the coefficient b and the DR measurements.

The effect of high flux irradiation, at a dose up to 415 Gy in EPDM
samples, leads to a decrease in the crystallinity degree (crystalline
volume fraction). This is revealed through the decrease in the
intensity of the tan (f) maximum which is related to the melting of
the crystalline zones in the EPDM, as it was previously reported in
Ref. [20], see Fig. 6. However, by increasing the irradiation dose
a subsequent increase in the crystallinity degree is achieved.
Indeed, Fig. 6 shows that the maximum of tan (f) increases as
irradiation dose increases for values higher than 415 Gy. In addi-
tion, crystals developed at irradiation doses higher than 415 Gy are
larger than the ones appearing in the rubber matrix prior to irra-
diation. In fact, for dose higher than 415 Gy the temperature of the
tan (f) maximum (Tp) increases, indicating an increase in the size
of the crystals, see right axis in Fig. 6.

In contrast, samples irradiated at low fluxes exhibited an
increase in the volume fraction of crystals with respect to the initial
volume fraction of the unirradiated ones, but the size of the crystals
does not changed appreciably, as it was the case of irradiated
samples at high flux. The maximum amount of crystals (volume
fraction) for irradiated samples at low flux was achieved at around
32 Gy, see Fig. 7 [19,20].

In this work we have obtained the change in the crystallinity
degree in EPDM by means of DR measurements performed in the
same samples where DMA studies were realized. Fig. 8 shows the
behaviour of the real part of the electric permittivity, 30, as a func-
tion of the frequency; for the high flux irradiated and unirradiated
Fig. 6. Left axis: Maximum value of the tan (f) measured in DMA as a function of the
irradiation dose at high flux. An increase in the tan (f) corresponds to an increase in
the crystalline volume fraction, see text. Right axis: Temperature corresponding to the
tan (f) maximum as a function of the irradiation dose. An increase in Tp corresponds
to an increase in the crystal size.
samples detailed in Table 1. Fig. 9 is equivalent to Fig. 8, for low flux
irradiated and for the unirradiated samples detailed in Table 1.
Experimental data were fitted to a Cole–Cole equation, which
correspond to a Havriliak–Negami equation with the parameter
controlling the asymmetrical broadening equal to 1 [25–29]. Fitted
curves are plotted by means of lines.

Table 2 summarises for the samples of Table 1 the results of the
relaxation time, s0, obtained for fitting a Cole–Cole function to the
measured data.

Fig. 10 shows the variation of the relaxation time, s0, as a func-
tion of the irradiation dose for high fluxes. The values of the misfit
coefficient b which are also shown in Fig. 10, have been calculated
using Eq. (16). We have utilized this equation due to the experi-
mental limitation for obtaining, for the used samples, the values of
the Poisson moduli which appear in the general Eq. (30). Never-
theless, using the one-dimensional approximation will not modify
appreciably the analysis made in this work. In fact, unless a large
change in the mechanical properties of the crystalline/amorphous
Fig. 8. Real part of the electrical permittivity as a function of frequency for non-irra-
diated and high flux irradiated samples. Non-irradiated: squares, circles: 415 Gy, dia-
monds: 830 Gy, triangles: 8300 Gy.



Fig. 10. Misfit coefficient b calculated through the new model using Eq. (16) (full
circles) and relaxation time (empty circles) obtained from dielectric measurements as
a function of the irradiation dose at high flux. Vertical broken line indicates the dose
(415 Gy) where the crystalline volume fraction and the crystal size have decreased
from the non-irradiated state, being the smallest values achieved, respectively. At
higher doses than 415 Gy, the crystalline volume fraction and crystal size increase.

Fig. 9. Real part of the electrical permittivity as a function of frequency for non-irra-
diated and low flux irradiated samples. Non-irradiated: squares, empty circles: 12.7 Gy,
empty triangles: 38.2 Gy, inverted triangles: 51 Gy.
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phases occurs, Poisson moduli ratio is constant. Then Eq. (16)
obtained for the one-dimensional approximation differs only in
a constant from Eq. (30). Therefore, Eqs. (16) and (30) show iden-
tical trends with crystalline/amorphous fractions; they differ only
in the numerical value. In order to illustrate in a numerical manner
the behaviour of b in neutron irradiated EPDM we will use Eq. (16),
taking into account that its absolute value is not meaningful, only
relative changes are.

The calculus of b requires the values of the Young moduli for the
amorphous and crystalline phases Em, and Ei respectively and their
corresponding volume fractions frm and fri. Volume fractions have
been obtained from the DMA measurements previously reported,
in Refs [19,20]. Nevertheless, in Eq. (16) we have used the dynamic
elastic shear modulus, G0, instead of the Young modulus. The
oscillating frequency in DMA tests from which we have calculated
G0, for all the tested samples, was close to 4 Hz. This frequency is
inside the usual frequency range for polymer DMA tests. Other
frequencies for performing the measurements can be chosen
meanwhile, the approximations made in the calculations hold as
valid. Anyway, this will not diminish nor obstruct the subsequent
analysis made here. Mocellini et al. in a previously reported work
[12] described the procedure for obtaining the values of G0m and G0i.
This procedure is summarised in Appendix A.

Returning to Fig. 10, the initial state of the rubber exhibits
a coefficient b with a value close to 0.975. Subsequently, for a dose
of 415 Gy, where both the crystal size and volume fraction of
crystals decrease (see Fig. 6), b goes close to 1, indicating that the
Table 2
Relaxation time obtained from fitting a Cole–Cole equation to the DR measurements.

Dosis (Gy) Irradiation condition
(low/high flux)

(s0� 0.1)� 103 (s)

0-non-irradiated 0.6
12.7 Low 3.1
38.2 Low 0.5
51 Low 0.6
415 High 1.4
830 High 0.9
8300 High 1.2
accommodation of the strain misfit produced by the crystal inclu-
sions causes practically negligible stresses into the matrix.

Increasing the dose, both the crystal size and the volume frac-
tion increase, due to the chemi-crystallization promoted by the
neutron irradiation; Fig. 6. Here the calculated values of b decrease,
points for 830 Gy and 4150 Gy in Fig. 10. This is because the increase
in size of the crystal inclusions and their volume fraction promote
the appearance of new mechanical stresses into the matrix.

It should be noticed that, the relaxation time measured from the
electrical excitation of the crystals caused by the dipoles in the
amorphous zone reveals the behaviour of the crystallinity into
the rubber matrix, as a function of the irradiation dose. In fact, the
relaxation time increases with the deterioration of the degree of
crystallinity at 415 Gy. Subsequently, the restoration of the crys-
tallinity leads to a decrease in the relaxation time at 830 Gy. A zone
with higher symmetry exhibits a higher rate of mobility and
consequently a smaller relaxation time [27,28]. The development of
Fig. 11. Misfit coefficient b calculated through the new model using Eq. (16) and
relaxation time obtained from dielectric measurements as a function of the irradiation
dose at low flux. The irradiation doses for the highest and lowest degree of crystallinity
achieved during the irradiation are indicated by means of arrows.
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crystallinity in the samples by irradiation, that is, the increase of
both volume fraction and size of crystals, leads to the increase of the
internal stresses by the appearance of inclusions into the matrix
(b decreases). At the same time, since these inclusions have a higher
symmetry, the mobility under electrical excitation is larger and
consequently the relaxation time is smaller. Therefore, the behav-
iour of the relaxation time results in agreement with the behaviour
above exposed for the coefficient b. For irradiation at 8300 Gy, both
b and the relaxation time have increased due to the deterioration of
the rubber matrix as a consequence of the irradiation process, see
Ref. [20].

For the low flux irradiated samples, we have performed
dielectric measurements, Fig. 9, for samples in the states with the
lowest and highest volume fraction of crystals, i.e. 12.7 Gy and
38.2 Gy, and also for the last dose achieved, 51 Gy (see Fig. 7). Fig. 11
shows the behaviour of b and the relaxation time as a function of
the irradiation dose for low flux irradiated samples. At 12.7 Gy the
deterioration of the initial crystallinity of the rubber in the as-
received state occurs (see Fig. 7), and then b / 1. The largest degree
of crystallinity developed by chemi-crystallization, at 38.2 Gy, leads
to a decrease in b, indicating that internal stresses are produced
into the rubber, Fig. 11.

The behaviour of the relaxation time s0, shows a strong increase
in the state of less crystallinity and a subsequent decrease after the
development of the crystals by chemi-crystallization, in agreement
with the above exposed about the correlation between the behav-
iours of the coefficient b and the relaxation time as a function of the
degree of crystallinity. It should be pointed out that, in the case of
low flux irradiated samples the behaviour of both the coefficient
b and the relaxation time is related mainly to the volume fraction.
That means that the change in the size of the crystals is smaller than
for the case of high flux irradiated samples, see Figs. 6 and 7.
6. Conclusions

The present work presents a model, which evaluates the mean
strain inside a material matrix with inclusions. In comparison to
Lee’s model, which takes into account inclusions without interac-
tion in the matrix, the proposed model is a more general one, which
allows for interaction between inclusions, and so, for different
amount of volume fractions of inclusions within the matrix. In that
sense the coefficient b measures the average inclusion strain in the
whole matrix and vice versa.

Results show that the coefficient b of the presented model gives
an accurate representation of the average strain in the rubber
matrix caused by the crystallites in a two-phase polymer as EPDM.
The coefficient b is closely related to the degree of crystallinity into
the polymer and following the evolution of the values of this
coefficient we can monitor the change in the crystalline degree into
the rubber matrix.

Dielectric relaxation measurements were suitable for observing
the changes in the crystallinity degree in EPDM and the results of
the relaxation time obtained from these measurements are in
agreement with both the different stages of crystallinity and the
degree of internal stresses into the rubber matrix.
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Appendix A

The procedure for obtaining the quantities involved in the
calculus of b will be described briefly here. At temperatures higher
than the maximum in tan (f), it is reasonable to consider that the
contribution to the measured value in tan (f) is originated from the
amorphous phase instead of the semi-crystalline one. In addition, it
is known that the dependence of the elastic modulus on temper-
ature in a restricted range, like the studied in the present work, can
be described by a linear approximation as in the text [12]. There-
fore, by extrapolating linearly the curve from the high temperature
part of the DMA spectrum for G0 towards room temperature, we
can obtain the value of G0 corresponding principally to the
amorphous phase at RT, G0a (RT), since most of crystals have been
melted. That is,

G0aðRTÞ ¼ G0a0 �mk RT (34)

where G0a0 is the ordinate at the origin, mk is the slope of the linear
extrapolation and RT is the room temperature in Kelvin. The
temperature range for fitting the straight-line was determined
from the linear zone of the corresponding tan (f) curve, between
the values at highest temperature and at 325 K. This temperature
was chosen since it corresponds to the point where starts the split
between the measured tan (f) and the fitted tan (f), from the
highest temperature curves; see for more details Ref. [12]. In
addition, following the Mocellini model [12], the volume fraction
(frc) and elastic modulus (G0c) of the crystalline phase can be
calculated as follows,

frc y

�
G0 � G0a

�
G0a

(35)

where the volume fraction of the crystalline and amorphous phase
satisfies the condition frcþ fra¼ 1.

The elastic modulus corresponding to the crystalline phase can
be obtained from

G0c ¼
frc G0 G0a

G0a � G0ð1� frcÞ (36)

Now with the values above, wee can obtain b from Eq. (16).
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